Оптимизация бизнес-процессов с помощью автоматизированных систем управления на основе искусственного интеллекта
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
SCIENTIFIC JOURNAL BULLETIN OF VORONEZH INSTITUTE OF HIGH TECHNOLOGIES
Online media
ISSN 2949-4443

Optimization of business processes using artificial intelligence-based automated control systems

idPshychenko D.

UDC 004.8:658.5

  • Abstract
  • List of references
  • About authors

The article discusses the optimization of business processes using automated control systems based on artificial intelligence (AI). Modern methods such as machine learning, robotic process automation, natural language processing, and predictive analytics are examined, which enhance operational efficiency, improve forecasting accuracy, and minimize errors. The advantages of implementing AI in various business sectors are analyzed, including the automation of routine tasks, real-time decision-making, and improving customer interactions. Attention is given to the challenges related to the implementation of AI in business processes, such as data protection issues and employee adaptation to new technologies.

1. Wu M. AI based smart business management and control analysis based decision making by machine learning model / M. Wu, X. Qin // Entertainment Computing. – 2024. – Vol. 51. – URL: https://doi.org/10.1016/j.entcom.2024.100724 [Accessed 3rd September 2024].

2. Bukhtueva I. AI-Enabled Sales Forecasting: Techniques and Best Practices for Improved Accuracy / I. Bukhtueva // Cold Science. – 2024. – No. 7. – pp. 4-13.

3. Bobunov A. Using containerization to simplify and accelerate testing processes in financial organizations / A. Bobunov // International Journal of Humanities and Natural Sciences. – 2024. – Vol. 8-1. – No. 95. – pp. 113-117.

4. Artificial Intelligence – Worldwide // Statista. – URL: https://www.statista.com/outlook/tmo/artificial-intelligence/worldwide [Accessed 3rd September 2024].

5. AI is showing "very positive" signs of eventually boosting GDP and productivity // Goldman Sachs. – URL: https://www.goldmansachs.com/insights/articles/AI-is-showing-very-positive-signs-of-boosting-gdp [Accessed 3rd September 2024].

6. Ponomarev E. Machine learning for credit assessment in mobile credit aggregators / E. Ponomarev // International Independent Scientific Journal. – 2024. – No. 65. – pp. 48-50.

7. Walmart’s Element: A machine learning platform like no other // Walmart. – URL: https://tech.walmart.com/content/walmart-global-tech/en_us/blog/post/walmarts-element-a-machine-learning-platform-like-no-other.html [Accessed 3rd September 2024].

8. Annual Reports & Proxy Statements: 2023 Annual Report // American Express. – URL: https://ir.americanexpress.com/financials/annual-reports-and-proxy-statements/default.aspx [Accessed 4th September 2024].

9. BofA’s Erica Surpasses 2 Billion Interactions, Helping 42 Million Clients Since Launch // Bank of America Corporation. – URL: https://newsroom.bankofamerica.com/content/newsroom/press-releases/2024/04/bofa-s-erica-surpasses-2-billion-interactions--helping-42-millio.html [Accessed 6th September 2024].

10. 10 Powerful Predictive Analytics Examples & Use Cases // Teramind. – URL: https://www.teramind.co/blog/predictive-analytics-examples/ [Accessed 7th September 2024].

11. Dudaiti G. Launching services in complex regions: Strategies and challenges for ride-hailing businesses in USA / G. Dudaiti // Sciences of Europe. – 2024. – No. 146. – pp. 19-22.

12. Balasubramaniam S. Artificial Intelligence‐Based Hyperautomation for Smart Factory Process Automation / S. Balasubramaniam, A. Prasanth, K.S. Kumar, S. Kadry // Hyperautomation for Next‐Generation Industries. – Wiley-Scrivener, 2024. – pp. 55-89.

Pshychenko Dmitrii
Docent

ORCID |

National Research University Higher School of Economics

Moscow, Russia

Keywords: automation, artificial intelligence (AI), business processes, machine learning (ML), natural language processing (NLP), predictive analytics, robotic process automation (RPA)

For citation: Pshychenko D. , Optimization of business processes using artificial intelligence-based automated control systems. Bulletin of the Voronezh Institute of High Technologies. 2024;18(3). Available from: https://vestnikvivt.ru/ru/journal/pdf?id=1352 .

82

Full text in PDF

Received 12.09.2024

Revised 13.09.2024

Published 30.09.2024