BecTHHK BOpOHEXKCKOro HHCTHTYTA BHICOKMX TEXHOJIOTHiA / @ ® @ 2025;19(1)
Bulletin of the Voronezh Institute of High Technologies https://vestnikvivt.ru

UDC 004.42
Methods of web application authorization

A. Dudak™

Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia

The article presents a comparative analysis of popular authorization methods in web applications:
JSON Web Token (JWT), OAuth2, and Keycloak. It emphasizes that authorization is a critical process
in access management, determining what a user can do after successful authentication. The
characteristics of each method are examined in detail. A comparison based on several criteria —
security, performance, scalability, flexibility, ease of integration, and management — demonstrates that
each approach has unique advantages and disadvantages that define its applicability in different
scenarios. The study supports the hypothesis that the choice of an authentication method should be
based on the project's specifics, its scale, security requirements, and infrastructure capabilities.

Keywords: authorization, JWT, OAuth2, Keycloak, security, scalability.
MeToabl aBTOPpU3aLUM BeO-NIPUIOKEHUI

A.A. lynak™

Tomckuil 2ocyoapcmeenHblll yHU8epcumem cucmem Ynpagienus U paouod1eKmpoHuKu,
Tomck, Poccus

B cmamve nposodumcs cpasHumenvHwill AHAAU3 NONYIAPHBLIX Memo008 asmopusayuu 6 6ed-
npunodicenusix: JSON Web Token (JWT), OAuth2 u Keycloak. Iloouepkusaemcsi, umo aemopuszayiisi
SGNAEMCST BANCHLIM NPOYECCOM 8 YNPAGIeHUU OOCMYNOM K pecypcam, Onpeodensiomum, 4Ymo
N0Ab3068AMENb MOJCEM JeNlamb NOCAe yCnewHol aymenmugurayuu. Paccmampugaromes ocobennocmu
Kadxcooco uz memooos. Cpagnenue N0 HECKONbKUM Kpumepusm — 0O€30nacHOCMb,
NPOU3BOOUMENbHOCTb, MACWMAOUPYEMOCIb, 2UOKOCMb, HPOCMOMA UHmezpayuu u ynpagieHue —
n036015€m COelamsv 6bl800, UMO KANCObIll NOOX00 001a0aem YHUKATbHLIMU NPEeUMYUecmeamu u
HEOOCMAamKAMU, KOMOopble ONpedesion ux NPUMEeHUMOCHb 6 pasiuunbix cyenapusx. Hccredosanue
000CHOBbIBAEM NPEONONIodNCeHUe O MOoM, UYMO 6blOOp Memooa aymeHmuurayuu OO0aNCeH
OCHOBbIBAMBCL HA cheyuguxke npoekma, e2o0 macwmade, mpebosanusx K 0€30nacHOCmu U
B03MONCHOCHAX UHPDPACMPYKIMYPUL.

Kmouesvie criosa: asmopuzayus, JWT, OAuth2, Keycloak, bezonacnocmo, macuimadbupyemocme.

Introduction

Modern web applications are characterized by security, reliability, and scalability of
authorization mechanisms. In a context of increasing year-over-year digital service users,
demands to raise performance coupled with data protection start to turn up as foreground for
distributed systems. Token-based authorization models, such as JSON Web Token (JWT) and
OAuth2, as well as more comprehensive solutions like Keycloak, are becoming increasingly
relevant.

The development of Web technologies has created an ever-growing demand for unified
and secure access control mechanisms able to provide user authentication and delegation of
rights without heavy loads on the server infrastructure. On the other hand, the choice of a
specific authorization method is related to a trade-off among security, performance, and
easiness of integration. For instance, JWT allows for stateless authorization but involves a
number of vulnerabilities regarding token storage security. OAuth2 is widely used in systems

© Hdynmak A.A., 2025 116

https://vestnikvivt.ru
mailto:aleksei.dudak@rambler.ru
mailto:aleksei.dudak@rambler.ru

BecTHuk BopoHeKCKOro HHCTHTYTA BHICOKUX TEXHOJIOTHI / 2025;19(1)
Bulletin of the Voronezh Institute of High Technologies https://vestnikvivt.ru

with third-party service integrations, though its implementation requires detailed configuration
and strict adherence to security protocols. Keycloak, in turn, is a strong means of centralized
access management but is highly complex in its implementation.

This work is aimed at comparative analysis, strengths, and weaknesses of the listed
authorization methods in order to outline optimal application scenarios. The study will allow a
deeper understanding of how the mechanisms of modern authentication technologies function
and influence the security and performance of web applications.

Main part. Theoretical foundations of authorization in web applications

Authorization is the most important process in access management to web application
resources, defining what a user can do after successful authentication. Although the terms are
used very frequently and almost interchangeably, one should understand the difference between
authorization and authentication. Authentication confirms the identity of the user, while
authorization regulates what resources or operations are available to the user. It is impossible
to develop modern web applications without developing an authorization mechanism in line
with security, performance, and scalability requirements, especially given the increasing pace
of distributed systems and cloud technologies.

Among the most critical requirements of authorization is to ensure data security. The
modern approaches include the usage of cryptographic methods that protect tokens and
minimize the storage of confidential information on the client side. For instance, digital
signature algorithms (RSA or HMAC) are widely used to confirm data integrity and authenticity
during token transfer. Statistical evidence shows that a security breach of authorization systems,
namely, due to improperly stored or intercepted transmission of tokens is among the most
prevalent in web applications (fig.) [1].

Falsified or stolen
medical data

Blackmail due to
compromised personal data

Geopolitical instability
and cyberwar

Critical infrastructure breakdown
(e.g. essential goods and services)
due to a cyberattack

Losing my own money

or valued data due to

a cyberattack

Cyber extortion
(e.g. ransomware)

Identity theft EEm Cyber leaders

Business leaders
s

0 il 2 3 4 5 6 7

Figure. Cyber-risk concerns between business leaders and cyber leaders

In addition, authorization must ensure scalability of the system. As the number of users
increases, traditional session management mechanisms based on server memory (e.g., server
session storage) become a bottleneck. An alternative is stateless authorization mechanisms,
such as JWT, which allow the server not to store information about the session state. This is
especially important for distributed systems, where each server can process requests
independently [2].

Another important aspect is the ease of integration and flexibility of solutions, as web
applications often interact with multiple third-party systems, such as API or microservices. In

216

https://vestnikvivt.ru

BecTHuk BopoHeKCKOro HHCTHTYTA BHICOKUX TEXHOJIOTHI / 2025;19(1)
Bulletin of the Voronezh Institute of High Technologies https://vestnikvivt.ru

such scenarios, support for modern protocols is important, including OAuth2 and OpenlD
Connect. These protocols provide standardized authorization and authentication mechanisms,
which simplifies the implementation of single sign-on (SSO) and delegation of rights.

Particular attention should be paid to protection against vulnerabilities such as replay
attacks and token compromise. To prevent such threats, timestamps, unique token identifiers
(nonces), and token expiration dates are implemented. It is also recommended to use transport
encryption (e.g., HTTPS), which reduces the likelihood of data interception.

Thus, authorization in web applications is an integral component of modern IT
infrastructure. It combines data protection mechanisms, scalability and ease of integration,
which is especially important in the context of the global spread of web technologies.
Innovation-oriented companies are actively implementing modern authorization methods, such
as JWT and OAuth2, to ensure the sustainability and competitiveness of their systems.
However, despite the advantages, the implementation of these approaches requires strict
adherence to security protocols and adaptation to specific operating conditions.

Overview of authorization methods

Web application authorization is based on various mechanisms, the most common of
which are JWT, OAuth2, and centralized access management systems such as Keycloak. These
technologies have their own implementation features that affect their use in different scenarios,
including distributed systems, third-party service integration, and data security.

Is JWT an open standard for transferring data between parties in the form of tokens
signed using the HMAC or RSA algorithms. JWT stands out for its lightweight nature and
independence from server state (stateless), which allows scaling applications without the need
to store session data on the server. The basic structure of the token consists of three parts: a
header, a payload, and a signature, combined into a string and encoded in Base64 format. This
makes JWT convenient for use in distributed systems where servers process requests in parallel.
However, JWT vulnerabilities include the risk of token compromise when stored on the client
side. For example, when using Local Storage in a browser, the likelihood of data leakage
through XSS (cross-site scripting) attacks increases. According to the OWASP report, about
14% of attacks on web applications are related to token security flaws [3].

One of authorization protocols is OAuth2, which is being hugely used today since it
allows access by other third-party applications without necessarily sharing user credentials. It
comes with major flexibility in the form of configurations for various access levels through
tokens; support for an authorization flow like an authorization code for web applications or the
implicit one targeting client applications-strict consideration on security protocols. As one
example, the obligatory use of HTTPS reduces the possibility of token intercept. Even in these
cases, implementation errors-for example, badly configured redirect URI-can lead to data
disclosure. In the USA, OAuth2 protocol is utilized for integrations-for example, from the
Stripe platform to third-party applications-in cases when access to user data is granted without
having to share API keys [4].

Yet one of the known weaknesses within OAuth2 is poor token check-up while
integrating the systems, and attackers use those to perform a replay attack. A signature
verification feature of the token should be part of it while employing a private key to develop
minimal risks for these kinds.

Keycloak is an all-in-one authorization and authentication manager that comes with
OAuth2 and OpenlD Connect support. Among its most significant advantages is the fact that it
can manage users centrally through interfaces and API. Keycloak is particularly handy for
organizations that have to deal with hundreds of users who require different levels of access.
Furthermore, the system allows for SSO mechanisms that minimize the headache for users

316

https://vestnikvivt.ru

2025;19(1)

BecTHuK BOpOHEKCKOro HHCTUTYTA BBICOKHX TEXHOJIOTHIi /
https://vestnikvivt.ru

Bulletin of the Voronezh Institute of High Technologies

while accessing various applications. The complexity of Keycloak is in the implementation and
further maintenance of high-load systems. According to the 2023 report from Gartner, the
average time required to set up Keycloak reaches up to 120 man-hours, together with integration
with existing systems [5].

It 1s interesting to note here that Keycloak performs access management for internal
corporate systems across large US corporations like IBM. Keycloak adds some extra advantage-
integration with Active Directory, multi-factor authentication-thus, making it preferable for
large enterprise customers.

Therefore, JWT, OAuth2, and Keycloak offer a wide range of options for the developer
regarding authorization according to project needs-from JWT, which is suitable for scalable
and distributed systems; OAuth2 for the integration of third-party applications; to Keycloak,
offering more flexibility in the form of centralized management. At the same time, all these
technologies require a thoughtful configuration and strict adherence to security protocols to
reduce vulnerability and increase system resilience.

Comparative analysis of methods

Modern web application authorization methods such as JWT, OAuth2, and Keycloak
provide different approaches to access control. JWT provides a high level of security when
implemented correctly, but is vulnerable when storing tokens in Local Storage, which can lead
to XSS attacks. OAuth2 offers a more sophisticated security protocol with the ability to use
multi-factor authentication, while Keycloak integrates OAuth2 and OpenlID Connect, offering
additional layers of security such as SSO and centralized access rights management (tabl.).

Table
Comparative analysis of authorization methods
Criterion JWT OAuth2 Keycloak
High when implemented . . .
Security correctly, vulnerable to | Supports HTTPS, MFA $S0, integration with
XSS OpenlD Connect
. Medium (delays in .
Performance High (stateless) token validation) Low under high load
. Excellent for distributed Good (can 'become Good with clustering
Scalability complex with many
systems support
apps)
S Limited (fixed token High (supports different | Very high (extensive
Flexibility .
payload) flows) configuration)
. . Simple, good Medium (requires Complex (server and
Ease of integration documentation precise configuration) API setup required)
User management | No built-in management Managed via external Centralized
systems management, SSO

Thanks to its principle of stateless authorization, JWT demonstrates high performance,
making it particularly suitable for high-load systems. OAuth2 requires additional resources to
work with refresh tokens, and Keycloak creates a load on the server, especially when integrating
with external systems [6].

For scalable distributed systems, JWT is suitable due to its stateless architecture.
OAuth2 and Keycloak also demonstrate good scalability, but Keycloak may suffer from
performance degradation under high load without caching settings [7]. OAuth2 is more flexible
due to its support for various authorization flows, and Keycloak offers additional customization
options for organizations with high access control requirements.

416

https://vestnikvivt.ru

BecTHuk BopoHeKCKOro HHCTHTYTA BHICOKUX TEXHOJIOTHI / 2025;19(1)
Bulletin of the Voronezh Institute of High Technologies https://vestnikvivt.ru

Due to its ease of integration, JWT is an ideal choice for developers working with
RESTful API. OAuth2 is more complex to set up, especially when using refresh tokens or
implementing multi-factor authentication. Keycloak requires significant effort during the
implementation phase, including setting up servers, configuring access rights, and training
employees [8].

Applications with high performance and scalability requirements can benefit from using
JWT, though it has limitations in flexibility and potential security risks. OAuth2 demonstrates
versatility and reliability, but the complexity of implementation makes it less accessible for
small projects. Keycloak, although difficult to configure, is a powerful tool for large
organizations with distributed systems and strict access control requirements. Each of the
solutions has its own optimal use cases and depends on the needs and capabilities of a particular
project.

Conclusion

A comparative analysis of the JWT, OAuth2, and Keycloak authentication methods
showed that each of them has unique strengths and weaknesses that determine their applicability
in different scenarios. JWT is an excellent choice for high-load systems that require scalability
and performance, but its security depends on proper configuration and protection of tokens.
OAuth2 provides high flexibility and security, especially in integration with external services,
but requires complex configuration and protocol compliance. Keycloak, despite its complexity,
offers powerful centralized access management and support for various security mechanisms
such as SSO and MFA, making it ideal for large organizations. Ultimately, the choice of
authentication method should be based on the specifics of the project, its scale, security
requirements, and infrastructure capabilities, which determines its effectiveness and long-term
stability.

REFERENCES

1. Global Cybersecurity Outlook 2023: Insight Report [Electronic resource]. —
URL: https:// www3.weforum.org/docs/WEF_Global Security Outlook Report 2023.pdf
[Accessed 9™ January 2025].

2. IMepcnekTHBBI pa3BUTHST HHYOPMAITMOHHON 0€30MaCHOCTH: TJI00AIbHBIC BBI3OBHI U
ctparerun 3amuthl / A. SkoBumun, U. Ky3uenos, U. [Ipo3nos [u np.] // NadopmanmonHbie
pecypebl Poccun. — 2024, — Ne 2 (197). — C. 93—-103.

3. OWASP Top Ten [Electronic resource] / OWASP® Foundation. — URL:
https://owasp.org/www-project-top-ten/ [Accessed 9™ January 2025].

4. OAuth 2.0 [Electronic resource] // Stripe Documentation. — URL:
https://docs.stripe.com/stripe-apps/api-authentication/oauth [Accessed 10" January 2025].

5. Gartner Magic Quadrant for Access Management [Electronic resource] // Gartner. —
URL: https://www.gartner.com/en/documents/4936631 [Accessed 10" January 2025].

6. Advanced Security Mechanisms in the Spring Framework: JWT, OAuth, LDAP and
Keycloak / N. Dimitrijevi¢, N.Zdravkovié, M. Bogdanovi¢ [etal.] // BISEC’23: 14"
International Conference on Business Information Security, November 24, 2023, Ni$, Serbia:
CEUR Workshop Proceedings. — 2024. — P. 64-70.

7. Norimatsu T. Policy-Based Method for Applying OAuth 2.0-Based Security Profiles
/ T.Norimatsu, Yu. Nakamura, T. Yamauchi // IEICE Transactions on Information and
Systems. —2023. — Vol. E106.D, No. 9. — P. 1364—-1379.

8. Sidorov D. Cross-browser compatibility issues and solutions in web development /
D. Sidorov // ISJ Theoretical & Applied Science. —2024. — Vol. 11, No. 139. — P. 18-21.

506

https://vestnikvivt.ru
https://www3.weforum.org/docs/WEF_Global_Security_Outlook_Report_2023.pdf
https://owasp.org/www-project-top-ten/
https://docs.stripe.com/stripe-apps/api-authentication/oauth
https://www.gartner.com/en/documents/4936631

BecTHuk BopoHeKCKOro HHCTHTYTA BHICOKUX TEXHOJIOTHI / 2025;19(1)
Bulletin of the Voronezh Institute of High Technologies https://vestnikvivt.ru

INFORMATION ABOUT THE AUTHOR

Dudak Aleksei, specialist degree, Tomsk State University of Control Systems and
Radioelectronics, Tomsk, Russia.
e-mail: aleksei.dudak@rambler.ru

616

https://vestnikvivt.ru
mailto:aleksei.dudak@rambler.ru

