Сравнительный анализ результатов машинного обучения и регрессионной модели траекторий поведения пользователей онлайн-сервисов
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
SCIENTIFIC JOURNAL BULLETIN OF VORONEZH INSTITUTE OF HIGH TECHNOLOGIES
Online media
ISSN 2949-4443

Comparative analysis of machine learning results and regression model of online service user behavior trajectories

idShipilova E.A. , Nekrylov E.E.  

UDC 004.9

  • Abstract
  • List of references
  • About authors

The dynamics of behavior of online customers is of great interest to marketers in order to maximize the profit of the store and predict the development of online sales. The most widespread methods of processing statistical data are regression statistical analysis methods, and machine learning methods acquire relevance. The purpose of the study was to predict the behavior of online store users, based on the original data obtained by BigData technologies. The correlation of the factor and the result was evaluated, the presence of a direct linear relationship was shown. Classical regression analysis methods would determine linear regression coefficients, assess their significance, model adequacy, mean absolute and relative approximation errors. The model was trained by machine learning methods, coefficients were determined. Comparative results are presented in the form of a graph. The prediction confidence interval was determined for the significance level α = 0,05. Relevant findings are presented.

1. Digital 2021: главная статистика по России и всему миру [Электронный ресурс]. – URL: https://spark.ru/user/115680/blog/74085/digital2021-glavnaya-statistika-po-rossii-i-vsemu-miru/ (дата обращения: 15.03.2023).

2. Прохорова М.В. Организация работы интернет-магазина: Пособие / М.В. Прохорова, А.Л. Коданина. – 3-е изд. М.: Дашков и К, 2020. – 332 с.

3. Gull M. Customer Behavior Analysis Towards Online Shopping using Data Mining, / M. Gull, A. Pervaiz // 2018 5th International Multi-Topic ICT Conference (IMTIC). – 2018. – pp. 1-5.

4. Шипилова Е.А. Анализ и моделирование траекторий поведения пользователей онлайн-сервисов с использованием платформы RETENTIONEERING / Е.А. Шипилова, Е.Е. Некрылов, Т.В Курчекова // Моделирование систем и процессов: Научно-технический журнал. – 2022. – Т. 15. – Вып. 4. – С. 82-93.

Shipilova Elena Alekseevna
Candidate of Technical Sciences, associate professor

Scopus | ORCID | eLibrary |

Air Force Academy named after N.E. Zhukovsky and Yu.A. Gagarin
Voronezh State University

Voronezh, Russia

Nekrylov Egor Evgenyevich

Voronezh State University

Voronezh, Russia

Keywords: regression analysis, machine learning, correlation coefficient, regression coefficients, model adequacy, prediction confidence interval

For citation: Shipilova E.A. , Nekrylov E.E. , Comparative analysis of machine learning results and regression model of online service user behavior trajectories. Bulletin of the Voronezh Institute of High Technologies. 2023;17(4). Available from: https://vestnikvivt.ru/ru/journal/pdf?id=1256 (In Russ).

112

Full text in PDF

Received 03.10.2023

Revised 09.10.2023

Published 31.12.2023