СОКРАЩЕНИЕ ВРЕМЕНИ АППРОКСИМАЦИИ НАГРУЗКИ ВЫЧИСЛИТЕЛЬНОГО КЛАСТЕРА С ИСПОЛЬЗОВАНИЕМ УПРОЩЕНИЯ ГИПЕР-ГАММА-РАСПРЕДЕЛЕНИЯ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
SCIENTIFIC JOURNAL BULLETIN OF VORONEZH INSTITUTE OF HIGH TECHNOLOGIES
Online media
ISSN 2949-4443

REDUCING THE APPROXIMATION TIME OF CLUSTER WORKLOAD BY USING SIMPLIFIED HYPERGAMMA DISTRIBUTION

Ahmed W.A. ,  Gaevoy S.V. ,  Fomenkov S.A.  

UDC 004.942

  • Abstract
  • List of references
  • About authors

An important method to analyze parallel workloads is modeling execution of those systems by using parallel workload models. We have already proposed many models, but all these models use a continuous variable approximation. In this paper a simplified method of Hypergamma distribution approximation is proposed. It reduces the number of the approximated distribution’s parameters and then uses Method of Moemnts or Maximum Likelihood Method. To validate the quality of the results described in this paper we use the simulation of this approximation and compare the results with the original workload in this paper.

Ahmed W. M. A.


Volgograd, Russia

Gaevoy S. V.


Volgograd, Russia

Fomenkov S. A.


Volgograd, Russia

Keywords: method of moments, maximum likelihood method, parallel workloads, rigid jobs, simulation, stochastic approximation, hypergamma distribution

For citation: Ahmed W.A. , Gaevoy S.V. , Fomenkov S.A. , REDUCING THE APPROXIMATION TIME OF CLUSTER WORKLOAD BY USING SIMPLIFIED HYPERGAMMA DISTRIBUTION. Bulletin of the Voronezh Institute of High Technologies. 2017;11(4). Available from: https://vestnikvivt.ru/ru/journal/pdf?id=336 (In Russ).

80

Full text in PDF

Published 31.12.2017