Разработка системы автономного движения и картографии для робота ROIN-RTS-100
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
SCIENTIFIC JOURNAL BULLETIN OF VORONEZH INSTITUTE OF HIGH TECHNOLOGIES
Online media
ISSN 2949-4443

Development of an Autonomous Driving and Mapping System for the ROIN-RTS-100 Robot

Pugachev N.S.  

UDC 004.07

  • Abstract
  • List of references
  • About authors

The task of controlling a robot in rough terrain in condition of a large distance between the operator and the robot is usually complicated by interference of the control signal and communication problems. Overall, situations of complete loss of communication are not excluded. In this case, the robot's behavior may be unpredictable and lead to an accident and breakdown. To avoid such scenarios it is desirable to have the functionality of autonomous decision-making by the robot based on the state of the environment, which the robot can perceive from sensors and cameras installed on board. This work provides an example of the development of such functionality, the purpose of which is in case of loss of communication with the operator to provide the ability for the robot to continue moving in the opposite direction in autonomous mode, with the purpose of either returning to the point where the signal was still available, or returning to the starting point of the movement.

1. Stachniss C. Simultaneous Localization and Mapping / C. Stachniss, J.J. Leonard, S. Thrun // Springer Handbook of Robotics. – Cham: Springer, 2016. – P. 1153–1176.

2. Robot Operating System 2: Design, Architecture, and Uses in the Wild / S. Macenski, T. Foote, B. Gerkey [et al.] // Science Robotics. – 2022. – Vol. 7, No. 66. – URL: https://doi.org/10.1126/scirobotics.abm6074 (дата обращения: 23.06.2025).

3. Gazebo [Электронный ресурс]. – URL: https://gazebosim.org/home (дата обращения: 23.06.2025).

4. Mur-Artal R. ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras / R. Mur-Artal, J.D. Tardós // IEEE Transactions on Robotics. – 2017. – Vol. 33, Iss. 5. – P. 1255–1262.

5. 3-D Mapping with an RGB-D Camera / F. Endres, J. Hess, J. Sturm [et al.] // IEEE Transactions on Robotics. – 2017. – Vol. 30, Iss. 1. – P. 177–187.

6. Labbé M. RTAB-Map as an Open-Source Lidar and Visual Simultaneous Localization and Mapping Library for Large-Scale and Long-Term Online Operation / M. Labbé, F. Michaud // Journal of Field Robotics. – 2019. – Vol. 36. – P. 416–446.

7. Theta*: Any-Angle Path Planning on Grids / K. Daniel, A. Nash, S. Koenig, A. Felner // Journal of Artificial Intelligence Research. – 2010. – Vol. 39. – P. 533–579.

8. Aggressive Driving with Model Predictive Path Integral Control / G. Williams, P. Drews, B. Goldfain [et al.] // IEEE International Conference on Robotics and Automation (ICRA). – IEEE, 2016. – P. 1433–1440.

9. Labbé M. Appearance-Based Loop Closure Detection for Online Large-Scale and Long-Term Operation / M. Labbé, F. Michaud // IEEE Transactions on Robotics. – 2013. – Vol. 29, Iss. 3. – P. 734–745.

10. Bay H. SURF: Speeded Up Robust Features / H. Bay, T. Tuytelaars, L.V. Gool // Computer Vision – ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7–13, 2006, Proceedings, Part I. – Berlin, Heidelberg: Springer, 2006. – P. 404–417.

11. Lowe D.G. Distinctive Image Features from Scale-Invariant Keypoints / D.G. Lowe // International Journal of Computer Vision. – 2004. – Vol. 60. – P. 91–110.

12. ORB: An Efficient Alternative to SIFT or SURF / E. Rublee, V. Rabaud, K. Konolige, G. Bradski // International Conference on Computer Vision. – IEEE, 2011. – P. 2564–2571.

13. Dellaert F. Factor Graphs and GTSAM / F. Dellaert, M. Kaess // GTSAM [Электронный ресурс]. – URL: https://gtsam.org/tutorials/intro.html (дата обращения: 23.06.2025).

14. Lu D.V. Layered Costmaps for Context-Sensitive Navigation / D.V. Lu, D. Hershberger, W.D. Smart // IEEE/RSJ International Conference on Intelligent Robots and Systems. – IEEE, 2014. – P. 709–715.

15. Inflation Costmap Plugin // Documentation – ROS Wiki [Электронный ресурс]. – URL: https://wiki.ros.org/costmap_2d/hydro/inflation (дата обращения: 23.06.2025).

16. Neto C.A.P. A-Star Path Planning Simulation for UAS Traffic Management (UTM) Application / C.A.P. Neto, G. de Carvalho Bertoli, O. Saotome // arXiv [Электронный ресурс]. – URL: https://arxiv.org/abs/2107.13103 (дата обращения: 23.06.2025).

Pugachev Nikolay Sergeevich

Email: pugachev1997@bk.ru

Voronezh State University

Voronezh, Russia

Keywords: computer vision, autonomous driving, SLAM, gazebo, ROS 2, depth camera, rtab-Map

For citation: Pugachev N.S. , Development of an Autonomous Driving and Mapping System for the ROIN-RTS-100 Robot. Bulletin of the Voronezh Institute of High Technologies. 2025;19(3). Available from: https://vestnikvivt.ru/ru/journal/pdf?id=1441 (In Russ).

41

Full text in PDF

Received 30.06.2025

Revised 11.07.2025